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Série 10

Tous les exercices seront corriges.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs)
l’exercice (⋆) et a rendre votre solution (eventuellement a plusieurs) avant le mercredi
de la semaine suivante. Il faudra transmettre votre solution sur moodle, sous forme
d’un fichier pdf unique (eventuellement tape en LaTeX) en suivant le lien moodle de
la semaine relative a cette la serie.

Rangs

Exercice 1. Determiner le rang des matrices

M =

(
1 2 3
2 3 1

)
, N =

1 2 3 4
2 3 4 1
3 4 1 2

 , M.N

en fonction de la caracteristique du corps K.

Solution 1. Le rang de M vaut 2 en toute caractéristique. Le rang de N vaut 2 si la
caractéristique est 2 et 3 dans les autres caractéristiques.

Le rang deM ·N =

(
14 20 14 12
11 17 19 13

)
vaut 1 en caractéristique 2 et 2 dans les autres

caractéristiques.

Exercice 2. Soient φ : U 7→ V et ψ : V 7→ W .

1. Montrer que rg(ψ ◦ φ) ⩽ rg(ψ) (on pourra comparer deux images).

2. Montrer que rg(ψ ◦ φ) ⩽ rg(φ) (on pourra comparer deux noyaux).

3. Montrer que si M,N sont des matrices de dimensions convenables

rg(M.N) ⩽ rg(M), rg(M.N) ⩽ rg(N).



4. Montrer la deuxieme inegalite ci-dessus en utilisant la premiere ainsi que des
proprietes de la transposition.

Solution 2.

1. Si x ∈ Im(ψ ◦ φ), alors il existe u ∈ U tel que x = ψ(φ(u)) ∈ Im(ψ). Donc
Im(ψ ◦ φ) ⊂ Im(ψ), et donc rg(ψ ◦ φ) ⩽ rg(ψ).

2. On a ker(φ) ⊂ ker(ψ ◦ φ). Donc, en utilisant le théorème du rang (pour φ et
ψ◦φ), on a 0 ⩽ dim(ker(ψ◦φ))−dim(ker(φ)) = dim(Im(φ))−dim(Im(ψ◦φ)) =
rg(φ)− rg(ψ ◦ φ).

3. Suit des deux premières parties en prenant M = Mat(ψ) et N = Mat(φ) et en
se souvenant que M ·N est la matrice de ψ ◦ φ.

4. rg(M ·N)) = rg((M ·N)tr) = rg(N tr ·M tr)
part.1

⩽ rg(N tr) = rg(N).

Changements de bases

Exercice 3. On considere la matrice suivante

M =

1 2 3 4
2 3 4 1
3 4 1 2

 ∈M3×4(Q)

que l’on voit comme matrice d’une application lineaire φ : Q4 → Q3 dans les bases
canoniques.

1. Que vaut φ(x, y, z, t) pour (x, y, z, t) ∈ Q4 ?

2. Trouver une base du noyau et de l’image de φ.

3. Trouver deux matrices A et B telles que A.M.B = I3×4(r) avec r = rg(φ).

Solution 3.

1. Pour tout (x, y, z, t) ∈ Q4 on a

φ(x, y, z, t) =M


x
y
z
t

 =

1 2 3 4
2 3 4 1
3 4 1 2



x
y
z
t

 =

x+ 2y + 3z + 4t
2x+ 3y + 4z + t
3x+ 4y + z + 2t

 .

2. On cherche une base de ker(φ). On resout

φ(x, y, z, t) =

x+ 2y + 3z + 4t
2x+ 3y + 4z + t
3x+ 4y + z + 2t

 =

0
0
0





et on obtient ker(φ) = {(11t,−9t, t, t) : t ∈ Q}. C’est evidemment une famille
libre et generatrice et donc une base de ker(φ).

Image : On raisonne sur les colonnes de la matrice M qui forment une famille
generatrice de Im(φ) (c’est l’image de la base canonique de Q4). Il suffit de
montrer que {(1, 2, 3), (2, 3, 4), (3, 4, 1)} est une famille libre et ainsi celle ci
constituera une base de l’image.

3. Il faut trouver deux bases B3 et B4 dans lesquelles matB3,B4 = Id3×4 . On
remarque

φ(0, 1, 0, 0) = (2, 3, 4), φ(0, 0, 1, 0) = (3, 4, 1), φ(11,−9, 1, 1) = (0, 0, 0)

et on pose

B3 =

{1
2
3

 ,

2
3
4

 ,

3
4
1

} et B4 =

{
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


11
−9
1
1

}

On a donc les matrices de changement de base

matB3,B0
3
=

−13/4 5/2 −1/4
5/2 −2 1/2
−1/4 1/2 −1/4

 ,matB0
4 ,B4

=


1 0 0 11
0 1 0 −9
0 0 1 1
0 0 0 1


et avec A = matB3,B0

3
, B = matB0

4 ,B4
on a A.M.B = I3×4(3).

Exercice 4 (De l’interet de changer de base (⋆)). Soit K un corps de caracteristique
̸= 3 et

φ :
K2 7→ K2

(x, y) 7→ (x/3 + 4y/3,−x/3 + 5y/3)
.

Soit B := {f1, f2} = {(2, 1), (1, 2)}
1. Calculer la matrice M de φ dans la base canonique B0.

2. Montrer que B est une base de K2 et exprimer (1, 0) et (0, 1) en fonction de f1
et f2 et calculer la matrice N de φ dans cette base de deux manieres :

— Par la formule de changement de base pour les matrices.

— Directement en exprimant φ(fi) i = 1, 2 en combinaison lineaire de f1, f2.

— Montrer que si on avait car(K) = 3 alors B ne serait pas une base.

3. Calculer par recurrence Nn pour tout entier n ⩾ 0 (on pose N0 = Id2).

4. Montrer par recurrence que si C ∈ GL2(K) et U ∈M2(K) alors pour tout n ⩾ 0

(C.U.C−1)n = C.Un.C−1.



5. En deduire une expression (relativement) elementaire de la puissance Mn pour
tout n ⩾ 0.

Solution 4.

1. We will denote the elements of the canonical basis B0 by e1 = (1, 0) and e2 =
(0, 1). Observe that

φ(e1) =

(
1

3
,
−1

3

)
,

φ(e2) =

(
4

3
,
5

3

)
Therefore we have

MatB0,B0 =

(
1
3

4
3

−1
3

5
3

)
2. Observe that if car(K) ̸= 3, f1 and f2 are linearly independent (libre) : By

definition we have {
2λ1 = λ2

2λ2 = −λ1

{
2λ1 = λ2

3λ2 = −λ0

If car(K) ̸= 3 then λ1 = λ2 = 0 and the vectors are linearly independent. If
car(K) = 3 note that the system has solutions for non-zero λ2 and therefore
the vectors are not linearly independent.

We will now compute the matrix of φ in the basis of B denoted by MatBB

using the formula of changing basis, i.e.

N =MatBB = IdBB0MatB0B0IdB0B,

where by IdAB we denote the matrix of chanign basis from A to B. First we
compute IdBB0 . Observe that

(e1) =
2

3
f1 −

1

3
f2,

(e2) =
2

3
f2 −

1

3
f1.



Therefore

IdBB0 =

(
2
3

−1
3

−1
3

2
3

)
.

Then we compute IdB0B. Observe that f1 = 2e1 + e2 and f2 = e1 + 2e2. Then

IdB0B =

(
2 1
1 2

)
.

Therefore we have

MatBB =

(
2
3

−1
3

−1
3

2
3

)(
1
3

4
3

−1
3

5
3

)(
2 1
1 2

)

N =MatBB =

(
1 1
0 1

)
.

We now compute MatBB directly. In order to do this one has to compute

φ(f1) = (2, 1) = 1f1 + 0f2,

φ(f2) = (3, 3) = f1 + f2.

These coefficients form the columns of the matrix MatBB which is therefore
given by

N =MatBB =

(
1 1
0 1

)
.

This confirms our computation using the formula of changing basis.

3. Observe that by simple computations one can see that taking the n-th power
of the matrix N gives us (

1 n
0 1

)
4. Observe that since C−1C = Id we have

(C.U.C−1)n = C.U.C−1 . . . C.U.C−1 = C.U.U . . . U.U.C−1 = C.Un.C−1

5. We know from the theory of the course that IdB,B0 is invertible and

IdB0B = Id−1
B,B0 .

Therefore for the formula of changing basis

M = IdB0BMatB0B0Id−1
B0B

M = IdB0BNId
−1
B0B.

So together with the formula from Point 4 we have Mn = IdB0BN
nId−1

B0B



Produits de matrices

Exercice 5. Soit M = (mij) ∈ Md′′×d′(K) et N = (nkl) ∈ Md′×d(K). Montrer par
un calcul litteral que

t(M.N) = tN tM.

Solution 5.

On a

( t(M.N))ij = (MN)ji =
d′∑

k=1

MjkNki =
d′∑

k=1

( tN)ik(
tM)kj = ( tN tM)ij.

Ainsi les composantes sont egales et on conclut.

Exercice 6. Soit K un corps et pour d ⩾ 2

B0
22 := {Eij, i, j ⩽ 2} ⊂M2(K)

l’ensemble des matrices elementaires de taille 2 (on rappelle que c’est une base de
M2(K) : on l’appelle la base canonique de M2(K)).

On definit les SEVs suivants de M2(K) :

D2(K) = Vect(E11, E22) et T2(K) = Vect(E11, E12, E22).

1. Quelles sont les dimensions de ces SEVs ? Donner la forme generale d’une ma-
trice dans ces deux SEVs ; comment appelle-t-on ces ensembles de matrices ?

2. Montrer que ces SEVs sont stables par produits et sont en fait des sous-algebres
de M2(K).

3. Lesquelles de ces sous-algebres sont commutatives ?

Solution 6.

1. D2(K) =

{(
x 0
0 y

)
| x, y ∈ K

}
de dimension 2, le sous-espace des matrices

diagonales. T2(K) =

{(
x y
0 z

)
| x, y, z ∈ K

}
de dimension 3, le sous-espace

des matrices triangulaires supérieures.



2. (
x1 0
0 y2

)
·
(
x2 0
0 y2

)
=

(
x1x2 0
0 y1y2

)
∈ D2(K).(

x1 y1
0 z1

)
·
(
x2 y2
0 z2

)
=

(
x1x2 x1y2 + y1z2
0 z1z2

)
∈ T2(K).

Et
Id2 ∈ D2(K) ⊂ T2(K).

3. D2(K) est commutatif. T2(K) ne l’est pas, par exemple :(
1 1
0 1

)
·
(
1 3
0 2

)
=

(
1 5
0 2

)
et (

1 3
0 2

)
·
(
1 1
0 1

)
=

(
1 4
0 2

)
Exercice 7. Soit K un corps. On considere la matrice 3× 3

M =

0 0 −1
1 0 −1
0 1 −1

 ∈M3(K)

1. Calculer M2 =M.M,M3 =M.M.M, et trouver a0, a1, a2 ∈ K tels que

03 =M3 + a2.M
2 + a1.M + a0.Id3.

2. Montrer (par recurrence) que pour tout k ⩾ 3, Mk est combinaison lineaire de
{M2,M, Id3}.

3. On note

K[M ] = Vect(Id3,M,M2, · · · ,Mk, · · · )
= {a0.Id3 + a1.M + · · · ad.Md, d ⩾ 1, a0, a1, · · · , ad ∈ K} ⊂M3(K)

l’espace vectoriel des matrices engendre par toutes les puissances deM (on pose
M0 = Id3).

(a) Montrer que
K[M ] = Vect(Id3,M,M2).

Quelle est la dimension de K[M ] ?

(b) Montrer que K[M ] est stable par produit et que c’est un sous-anneau de
M3(K).

Solution 7.



1. M2 =

0 −1 1
0 −1 0
1 −1 0

, M3 =

−1 −1 1
−1 0 1
−1 0 0

. On remarque que M3 + M2 +

M + Id3 = 03. La matrice M s’appelle la matrice compagnon du polynôme
X3 +X2 +X + 1.

2. Si k = 3, on a M3 = −M2 −M − Id3. Supposons k ⩾ 4 et le résultat vrai pour

k − 1. Alors Mk = M ·Mk−1 HR
= M · (a2M2 + a1M + a0) = a2M

3 + a1M
2 +

a0M
cas k=3
= −a2M2 + (−a2 + a0)M − a2Id3.

3. (a) Par la partie 2, {Mk | k ⩾ 0} ⊂ Vect(Id3,M,M2). DoncK[M ] ⊂ Vect(Id3,M,M2),
car la famille {Mk | k ⩾ 0} engendre K[M ]. L’autre inclusion est évidente.
La dimension de K[M ] est de 3 comme espace vectoriel sur K.

(b) Tout d’abord, Id3 ∈ K[M ]. De plus si
∑p

i=0 aiM
i et

∑q
j=0 bjM

j ∈ K[M ],
alors (

p∑
i=0

aiM
i

)
·

(
q∑

j=0

bjM
j

)
=

p+q∑
k=0

k∑
m=0

ambm−kM
k ∈ K[M ].

Exercice 8. Soit A = (aij)i,j⩽2 ∈M2(K) une matrice et [A.], l’application de multi-
plication a gauche par A :

[A.] :M ∈M2(K) 7→ A.M ∈M2(K).

1. Montrer que [A.] est lineaire.

2. Montrer que [A.] est inversible ssi A est inversible.

3. Calculer la matrice de [A.] dans la base canonique de M2(K) (formee des ma-
trices elementaires dans l’ordre ci-dessous)

B0
22 = {E11, E12, E21, E22}.

4. Montrer que
A2 = 02 ssi Im([A.]) ⊂ ker([A.])

(pour une direction remarquer que A ∈ Im([A.])).

5. On considere l’application

A ∈M2(K) 7→ [A.] ∈ End(M2(K)).

Montrer qu’elle est lineaire et injective.

Solution 8. From now on the matrix multiplication A.B will be just denoted by AB.

1. To prove that the application [A.] is linear it is sufficient to show that

[A.](N1 + λN2) = [A.](N1) + λ[A.](N2)

for any λ ∈ K and N1, N2 ∈M2(K). This follows by the properties of multipli-
cation of matrices.



3. Consider the canonical basis E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
and

E22 =

(
0 0
0 1

)
. Then we have

AE11 =

(
a11 a12
a21 a22

)(
1 0
0 0

)
=

(
a11 0
a21 0

)
= a11E11 + a21E21.

Similarly we can compute

AE12 = a11E12 + a21E22,

AE21 = a12E11 + a22E21,

AE22 = a12E12 + a22E22

Therefore we can write [A.] in matrix form with respect to the canonical basis
as follows

A =


a11 0 a12 0
0 a11 0 a12
a21 0 a22 0
0 a21 0 a22

 .

2. This is equivalent to proving that

det(A) ̸= 0 ⇔ det(A) ̸= 0.

Observe that

det(A) = a11 det

a11 0 a12
0 a22 0
a21 0 a22

+ a12 det

 0 a11 a12
a21 0 0
0 a21 a22

 ̸= 0

⇕

a11a22 det

(
a11 a12
a21 a22

)
−a12a21

(
a11 a12
a21 a22

)
⇕

a11a22 det(A)− a12a21 det(A) ̸= 0

⇕
det(A)2 ̸= 0

⇕
det(A) ̸= 0.



4. We would like to prove that A2 = 0 ⇔ Im[A.] ⊂ ker[A.]. We will use the

following notation. A matrix M =

(
m11 m12

m21 m22

)
will be denoted in vector form

as m =


m11

m12

m21

m22

 (and we say M is the matrix form of m).

We will first prove this implication (⇒). SupposeA2 = 0 and let v ∈ Im[A.].
Then there exists w such that v = [A.]w. This implies that in matrix form
V = AW . Since A2 = 0 we have AV = AAw = 0. This can be written as
[A.][A.]w = 0. Therefore we can conclude v = [A.]w ∈ ker[A.]. For the other
implication : Suppose Im[A.] ⊂ ker[A.]. We know that a, the vector form of the
matrix A is in Im[A.] (since [A.]Id = a). Therefore [A.]A = A2 = 0.

5. Denote by Φ the map described in point 5. It is linear since Φ(A + λB) =
[A.] + λ[B.] for every A,B ∈ M2(K) and λ ∈ K. We let the reader prove the
details of this. This map it is injective since

Φ(A) = 0 ⇔ A = 0 ⇔ A = 0.


